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Abstract

Background: Epigenetics is an important layer of transcriptional control necessary for cell-type specific gene
regulation. Recent studies have shown significant epigenetic patterns associated with developmental stages and
diseases. However, previous studies have been mostly limited to focal epigenetic patterns, whereas methods for
analyzing large-scale organizations are still lacking.

Results: We developed a hidden Markov model (HMM) approach for detecting the types and locations of
epigenetic domains from multiple histone modifications. We used this method to analyze a published ChIP-seq
dataset of five histone modification marks (H3K4me2, H3K4me3, H3K27me3, H3K9me3, and H3K36me3) in mouse
embryonic stem (ES) cells. We identified three types of domains, corresponding to active, non-active, and null
states. In total, our three-state HMM identified 258 domains in the mouse genome containing 9.6 genes on
average. These domains were validated by a number of criteria. The largest domains correspond to olfactory
receptor (OR) gene clusters. Each Hox gene cluster also forms a separate epigenetic domain. We found that each
type of domain is associated with distinct biological functions and structural changes during early cell
differentiation.

Conclusions: The HMM approach successfully detects domains of consistent epigenetic patterns from ChIP-seq
data, providing new insights into the role of epigenetics in long-range gene regulation.

Background
Well before the first eukaryotic genome was sequenced,
the notion that chromatin is partitioned into larger than
gene-size domains (such as the heterochromatin and
euchromatin) was conceived [1,2]. Genes that are func-
tionally related and co-regulated are often located close
to each other. These include the Hox and the b-globin
gene clusters [3,4]. More generally, unrelated spatially
proximal genes can still be co-regulated, and such co-
regulation can in part be explained by long-range chro-
mosomal interactions [5]. However, a major barrier for
understanding the mechanism for long-range gene regu-
lation is the difficulty of generating high-resolution
long-range chromosomal interaction data on a genomic
scale [6].
The fundamental unit of chromatin is the nucleosome,

which is a histone octamer wrapping up ~147 bp DNA.

The amino acid residues on the N-terminal tails of the
histone proteins can be covalently modified in a number
of different ways, and different biochemical modification
marks may have very different biological functions [7].
In recent years, genome-wide distributions of various
histone modifications in several eukaryotic organisms
have been mapped using chromatin immunoprecipita-
tion followed by either microarrays (ChIP-chip) or DNA
sequencing (ChIP-seq) [8-10]. It is thought that different
combinations of histone modifications result in different
functional specificities [11] and that several modifica-
tions form broad domains [12-14], which is helpful in
stabilizing chromatin state and transmitting the states in
cell division [15]. Integration of multiple histone modifi-
cation marks has identified distinct epigenetic patterns,
associated gene activities, and regulatory elements
[16,17]. However, most of these earlier studies are done
on a gene-by-gene basis and have ignored the spatial
correlation of epigenetic patterns.
Because it is difficult to detect long-range chromoso-

mal interactions through experimental methods, it is
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valuable to develop computational methods to identify
long-range correlations such as epigenetic domains
based on histone modification data. This can be used to
infer such interactions. Here we use the term “epige-
netic domain” to refer to a large-scale region containing
multiple genes with epigenetic patterns. For the rest of
the paper, we will use the terms “epigenetic domain”
and “domain” interchangeably. Such epigenetic domain
methods should provide mechanistic insights into coor-
dinated gene regulation. Several approaches have already
been developed in recent years [18-24]. However, two of
the studies [18,20] partition the genome without any
constraint, making the results hard to interpret. Other
studies consider only a single histone modification
mark, which can only give partial epigenetic information
[19,20]. Or the researchers only examined a certain pat-
tern of two modifications [21,22], simply small regions
[23], or were not looking at neighboring regions, only
clusters as a whole [24]. Therefore, further improvement
is still needed.
Here, we developed a novel method that uses genome-

wide histone modification data to identify epigenetically
consistent, multi-gene domains. We applied our method
to analyze a recently published ChIP-seq dataset for
mouse embryonic stem (ES) cells [10,25] and found that
we were able to identify a number of domains that are
significantly large (i.e. not just due to chance). We vali-
dated our predictions by integrating a number of data
sources. We also explored these histone modifications
in the neural progenitor (NP) cell line to determine
what, if any, changes in domain size, structure, and/or
function occur during early cell differentiation. Our
method provides a useful tool to investigate the role of
epigenetic domains in development.

Results and Discussion
Data type, preliminary manipulation and clustering
Genome-wide location data for five different histone
modification marks, H3K4me2, H3K4me3, H3K27me3,
H3K9me3, and H3K36me3, was taken from two ChIP-
seq datasets [10,25]. Since our goal was to identify
multi-gene regions with consistent histone modification
patterns, we treated each gene as a unit and summarized
the local distribution of each histone modification by a
single score. We arrived at a five-dimensional summary
score for each gene, corresponding to the average of the
sequence tag counts over the promoter (for H3K4me2,
H3K4me3, H3K9me3, and H3K27me3) or coding region
(for H3K36me3) (Figure 1).
We clustered the genes based on their histone modifi-

cation patterns and determined the number of clusters
via calculations of a “gap” statistic [26], which compares
the observed within-cluster dispersion for one run with
that expected by chance (i.e. averaging over 1000

permutations). The maximum gap value is achieved at
K = 3, where K is the number of clusters, and the two-
cluster partition also corresponds to a relatively high
gap statistic (Figure 2). In the two-cluster scenario, there
is a cluster of genes associated with high H3K4me2 and
H3K4me3 levels; while the other is associated with mod-
erate H3K27me3 level. In the three-cluster scenario,
there is an additional cluster characterized by moderate
level of the other modifications.

Prediction of epigenetic domains
To constrain on spatial correlation of histone modifica-
tion patterns, we applied a hidden Markov model
(HMM) to partition the genome into epigenetic domains
based upon the five-dimensional summary histone mod-
ification scores. In accordance with previous methods
[18], we assumed that the emission probability can be
approximated by multivariate Gaussian distribution.
This gives a better fit than a Poisson distribution (Addi-
tional file 1: Figure S1).
For hidden-state assignment, we compared the results

from two commonly used methods: the Viterbi and For-
ward-Backward algorithms, on Ch19. The results from
the methods were 99.8% identical (Additional file 2:
Figure S2). Since the Viterbi method is more computa-
tionally efficient and essentially as accurate, it was used
to assign our hidden gene states.
We considered two model configurations, correspond-

ing to two and three hidden states. For the rest of this
paper, we will further explore these two choices and
compare the corresponding results.
We used a likelihood ratio test to evaluate the statisti-

cal significance of a detected domain. With a false discov-
ery rate (FDR) cutoff of 0.01, we found 401 and 258
significant domains based on their likelihood ratio test
statistics for the two- and three-state HMMs respectively
(Tables 1 and 2, Additional file 3: Table S1, Additional
file 4: Table S2, Additional file 5: Table S3, Additional
file 6: Table S4, and Additional file 7: Table S5). The
average size of each domain was 11.31 genes for the two-
state model and 9.66 genes for the three-state model
(Figure 3). Both models found domains over the length
of 155 genes and had a minimum domain size of 2.
As expected, the two-state HMM resulted in an active
state (high H3K4me2/3 and low H3K27me3 activity)
and a non-active state (low H3K4me2/3 and high
H3K27me3 activity) (Table 3). For the three-state
HMM, we also identified three distinct epigenetic pat-
terns: an active cluster characterized by high H3K4me2/
me3 and low H3K27me3 level, a non-active cluster
characterized by high H3K27me3 and moderately low
H3K4me2/me3 level, and a null cluster characterized by
low level of all histone marks (Table 4). This null state
cannot be captured by the two-state HMM.
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Functional coherence of the predicted domains
It is intrinsically difficult to define a ‘gold-standard’ set
of epigenetic domains. To test whether our predicted
domains are biologically meaningful, we examined a
number of properties that are associated with chromatin
domains, as explained below.
First, we tested whether the histone modification pat-

terns were indeed consistent within each predicted
significant domain. To this end, we calculated the
within-domain variance of the summary score for each
modification in our significant domains, and tested
whether this is significantly lower than expected by
chance. Using permutation tests, we found that both the
two- and three-state HMMs had significantly lower var-
iances in the histone modifications considered in this
study (p-values < 0.05), with the exception of H3K9me3
(Figure 4). This suggests that H3K9me3 does not play a
major role in determining our domain states.
Second, we reasoned that genes that are embedded in

the same epigenetic domain are likely to be activated or
repressed together. Therefore, the gene expression levels

should be more correlated within an epigenetic domain
than what we would expect by chance. To test this
property, we compared the within-domain variance of
expression within a predicted domain with that for ran-
dom neighboring gene sets of the same size (in terms of
number of genes). For both models, the within-domain
variance in gene expression was lower than expected by
chance (p-values < 0.05) (Figure 5a). Also, the variance
for the three-state HMM is lower than the two-state
HMM, further supporting the notion that the three-
state HMM is a more appropriate model.
Third, we asked whether the genes that are embedded

in the same domain tend to have similar biological func-
tions. To this end, we examined the Gene Ontology
(GO) patterns within and between domains. We used
Fleiss’ Kappa [27], an accordance statistic, to measure
the coherence of GO terms within our significant
domains. Compared to a random selection of domain
bounds, our predicted significant domains had a more
concordant GO structure (p-values < 0.001) for the
two- and three-state models (Figure 5b). Again, the

Figure 1 Outline of methods. Brief four-step depiction of methods used in this study to find chromatin domains.
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three-state HMM had a higher level of accordance, sug-
gesting that it is a better fit of the data.
Finally, we recognized that the histone modification pat-

terns within a predicted domain are consistent, but substan-
tial variance still remains. As a further validation, we asked
whether our HMM was expected to provide reliable predic-
tions under such circumstances. To this end, we designed
numerical simulations mimicking the parameters for the
real data (Methods). For the two-state HMM, we were 98%
accurate in predicting the true states when using the
observed variances, and 97% accurate when using twice the
observed variances (Additional file 8: Figure S3a &

Additional file 9: Figure S4a). For the three-state HMM, we
were 99% accurate in our simulations (Additional file 8: Fig-
ure S3b & Additional file 9: Figure S4b). This suggests that
if such domain patterns actually exist in the data, our
model would be sufficiently able to detect them.

Validation against known domains
The Hox gene clusters are a well-described epigenetic
domain family. These genes regulate the anterior-posterior
axis of metazoan organisms and are expressed in a
sequential order during cell differentiation. In ES cells, the

Figure 2 Results from gap statistics analysis of a random sample of the data. The expected and observed log (WK) values are shown in (a)

Table 1 Summary statistics for significant domains in the
two-state HMM

State Number of
significant
domains

Min
domain
size

Max
domain
size

Average
domain
size

Variance in
domain
size

Non-
active

230 2 157 14.5 186.14

Active 171 2 29 7.02 16.45

Total 401 2 157 11.31 127.28

Table 2 Summary statistics for significant domains in the
three-state HMM

State Number of
significant
domains

Min
domain
size

Max
domain
size

Average
domain
size

Variance in
domain
size

Non-
active

25 2 17 9.48 12.59

Active 80 2 15 7.03 11.41

Null 153 2 155 11.06 227.02

Total 258 2 155 9.66 142.28
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Hox genes are targeted by the Polycomb group (PcG) pro-
teins and associated with bivalent domains [12,28]. Our
method correctly detected each of the four Hox clusters to
be in a non-active and significant domain. The results for
the Hoxa cluster on chromosome (Ch) 6 are shown in Fig-
ure 6a. Simple K-means clustering failed to capture these
state assignments.
Surprisingly, six of the ten largest predicted domains

in each model are null domains enriched with olfactory
receptor (OR) genes. For example, the largest OR gene
cluster on Ch 7 (as described by [29]), also showed a
clear distinction between HMM assignments and gene
function (Figure 6b). That is, all the 208 OR genes in
this 250 gene region are assigned to the same domain
type, while their neighboring genes (and even non-OR
genes within this cluster) are found to be in different

domain types. The state assignments also correspond
nicely with expression level changes (Figure 6b).
The OR genes are only expressed on in sensory neu-

rons, and only a single gene (out of 1300) is activated in
each cell [30]. We searched the literature for domain-
level regulation of OR genes and noticed a recent paper
showing that the selectivity of OR gene activation is
established by the long-range chromosomal interaction
between a single enhancer element and its target promo-
ter [31]. Due to the lack of sequence specificity of such
an interaction, it is reasonable to assume that the mainte-
nance of an open chromatin environment over a large
domain plays an important role in the regulation of OR
genes. A comparison of the domain organization between
sensory neurons and other cell types may provide further
insights into the unique feature of OR gene regulation.

Figure 3 Histogram distribution of significant domains. Distribution of significant domains for the (a) two-state HMM and (b) three-state
HMM. X-axis corresponds to the domain size; y-axis corresponds to frequency of observation.
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We investigated the enriched biological functions
associated with each domain type by exploring the top
three significant DAVID clusters [32] (Figure 7) for
genes in each domain. We found that the active
domains are enriched with genes involved in key cellular
processes, such as protein localization and transport. In
contrast, the genes embedded in null domains tend to
be associated with functions of a terminally differen-
tiated cell-type, e.g. keratin and olfactory receptors.
Non-active genes tend to be involved with development,
e.g. limb morphogenesis and homeobox. Thus, each
domain type is characterized by a different function.
Our analysis suggests that the epigenetic information
provides useful insights into cell-type specific regulation.

Domain changes in neural progenitor cells
Previous studies have identified dramatic epigenetic
changes during cell differentiation [10,14,33]. To test
whether the epigenetic changes also occur at the domain
level, we applied our three-state HMM to infer domain
states in the NP cells and compared the results for ES
cells (Additional file 10: Table S6). While the overall
change is moderate, we noticed some important changes
at specific loci. For example, we found that the non-
active Hoxa domain shrank significantly in NP cells
(Figure 6c), consistent with a previous time-course study
[34]. Such change is accompanied by activation of cer-
tain Hoxa genes in NP cells (Additional file 11: Figure
S5a). The loss of H3K27me3 is accompanied by a mod-
erate increase of H3K4me3 and expression levels. Little
changed for the OR genes between the ES and NP cell
lines (Figure 6d and Additional file 11: Figure S5b).
In total, we found that 179 of the 258 domains in ES

cells contain at least one gene that changes epigenetic

state in the NP cell line. For each significant ES domain,
if any genes within the domain have a new state in the
NP cell line, then those genes would represent a domain
change. Note that there may be smaller NP domains
than their corresponding ES domains, and that one ES
domain could be multiple NP domains. Thus our 258
significant ES domains were 450 NP domains (Addi-
tional File 10: Table S6). For these NP domains changes,
we again used DAVID to analyze the functions of the
genes that change state during this early stage of devel-
opment by examining the top three significant DAVID
clusters (Additional file 12: Figure S6) for each of our 6
types of change (and for genes that remained state
unchanged). Eight domains are non-active in ES cells
but become active in NP cells. These domains are
enriched with developmental regulators. On the other
hand, six domains, containing 108 genes, switch from
null to active states during differentiation.
Some of the non-active domains in ES cells remain

non-active in NP cells, and they may be important for
further development. On the other hand, a number of
domains switch from the active to the non-active state
in NP cells, and the functions of these domains are typi-
cally related to early embryonic development. They are
enriched with functions such as sex differentiation and
apoptosis. Thus, the early developmental genes are epi-
genetically marked in ES cells rather than at a later
developmental stage.

Conclusions
As the nucleosome level chromatin states become
increasingly well described [15], the next frontier
becomes the characterization of higher-order chromatin
structure. Numerous studies have suggested that epige-
netic domains play important roles in gene regulation
[5,35], yet the detection of genome-wide long-range
chromosomal correlations remains technically challen-
ging [6]. On the other hand, genome-wide histone mod-
ification data provides important information about
long-range gene regulation [12-14,36]. Thus it is valu-
able to develop computational methods to detect large-
scale domains based on histone modification data.
Here we developed an HMM-based method to predict

epigenetic domains. A similar method has recently been
used to characterize the epigenetic states associated with
gene promoters [37]. However, we extend this approach
to identify large-scale epigenetic patterns. Compared to
previous domain detection methods [18-20], our model
can easily accommodate additional histone modification
marks and provide easily interpretable prediction
outcomes.
Our model detects three distinct types of epigenetic

domains, two of which are transcriptionally inactive,
which we call non-active and null. These two domain

Table 3 Average (variance) histone modification activity
within a state for the two-state HMM

Modification Non-active State Active State

H3K4me2 1.453 (2.492) 4.653 (4.836)

H3K4me3 3.580 (18.538) 14.586 (60.923)

H3K27me3 2.089 (7.346) 0.740 (0.209)

H3K9me3 0.416 (0.112) 0.398 (0.0297)

H3K36me3 0.352 (0.176) 1.685 (5.266)

Table 4 Average (variance) histone modification activity
within a state for the three-state HMM

Modification Non-active State Null State Active State

H3K4me2 2.844 (2.106) 0.216 (0.083) 4.523 (4.934)

H3K4me3 7.020 (20.585) 0.499 (0.186) 14.205 (62.267)

H3K27me3 3.623 (10.534) 0.743 (0.412) 0.695 (0.130)

H3K9me3 0.458 (0.194) 0.383 (0.038) 0.394 (0.027)

H3K36me3 0.391(0.241) 0.367 (0.190) 1.615 (5.232)
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types are also distinct functionally in terms of both acti-
vation potential and biological functions. For example,
both the Hox and OR gene clusters form epigenetic
domains that are transcriptionally inactive in ES cells.
Yet the Hox genes are critical for the overall develop-
ment and are found in non-active domains in the ES
cell line, whereas OR genes are expressed only in speci-
fic adult cell types and are found in null domains in the
ES and NP cell lines. Therefore the epigenetic patterns
provide more regulatory information than can be appre-
ciated by gene expression data alone, signifying the
importance of characterizing domain types.
Recent studies have shown that spreading of histone

modification marks is an important epigenetic signature
of cell differentiation [13,14]. Our work can be viewed as
an extension in terms of considering the combinatorial
patterns of multiple histone modifications instead of
focusing on a single modification alone. Indeed, we

found changes of epigenetic domains from ES to NP
cells, which are accompanied by coordinated activation
of neuron-specific genes. Our analysis suggests that epi-
genetic domain-level changes may play an important role
in neuron differentiation and organismal development.
We recognize that our model still has a number of lim-

itations. For example, the reduction of the spatial epige-
netic patterns by gene-level summary scores precludes us
from pinpointing the exact locations of domain bound-
aries. In addition, we have ignored the correlation between
different histone modification marks, which may impor-
tant if data for a large number of marks is available. We
plan to overcome these limitations in future studies.

Methods
Gene-level Summary Score
Gene annotation was based on Refseq; we obtained 17,772
genes in total. For four of the five modifications

Figure 4 Average within-domain variance of a modification versus a random distribution. Two-state model (K = 2) results (and
corresponding permutation test p-values) are shown in red, three-state in blue (K = 3), random distribution shown in black. For four of the
modifications, the HMM domains have a significantly lower average variance (H3K4me2, H3K4me3 & H3K27me3: p-values < 0.001), suggesting
that the HMM has produced coherent domain bounds.
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(H3K4me2, H3K4me3, H3K27me3 and H3K9me3), the
tag counts peak near the TSS; therefore the average was
taken over the regions from -2 kb to +2 kb with respect to
the TSS. The tag counts for H3K36me3 are highest
around the 3’-end of the coding region of a gene; thus, we
took the average tag counts over this area as a gene’s cor-
responding score. Genes with more than 50% repetitive
sequences in either of these two regions were not used in
further analysis. Our preliminary data manipulations led
to the elimination of sites with poor ChIP-seq coverage,
resulting 17,469 (98.3%) genes used in further analysis.

Clustering
With the gene-specific summary scores, each gene is asso-
ciated with an m-dimensional vector, where m is the num-
ber of histone modification marks. As an initial guess for
the number of domain types, we clustered the m-dimen-
sional vectors using the k-means average agglomeration
clustering method. The optimal cluster number k was
selected using the gap statistic [26], defined as

Gap k E W Wk k( ) log log ,*= ( )( ) − ( )
where Wk

* is the observed within-cluster sum of

squares around the clusters means for one run, and E(.)

represents the mean value for 1000 random bootstrap
permutations.

Hidden Markov model
We chose HMM to infer domain locations, where the
hidden state at a given gene represented the associated
domain type, and the emission variables are the
m-dimensional vector summarizing the local histone
modification pattern. We assumed that our emissions
followed a multivariate Gaussian distribution.
When dealing with ChIP-seq data, researchers often

like to assume a Poisson distribution for the counts
mapped to each bin. This was not appropriate for our
analysis for two main reasons: (1) we fit our model on
non-integer summary scores to examine domain struc-
ture at the gene level and (2) the multi-dimensionality
of our study. By the central limit theory, even if our
raw counts followed a Poisson distribution, an average
score of these counts (say over a promoter region)
would follow a Gaussian distribution. To evaluate all
five modifications simultaneously, we assumed that
together they were from a multivariate Gaussian emis-
sion distribution with no covariance structure. We also
checked the validity of our assumption by comparing
distribution of the score data to its corresponding
Poisson and Gaussian distributions. For these reasons,

Figure 5 Coherence within predicted chromatin domains. The values (and corresponding permutation test p-values) for predicted chromatin
domains (red for two state model, K = 2, and blue for three, K = 3) are compared with the distribution estimated from 1000 random
permutations (black). Shown is the average within domain variance in gene expression (left) and the average level of Gene Ontology accordance
as measured by Fleiss’ Kappa (right) under the null hypothesis of incoherent domains. Note that our models result in significantly different
values.
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we assumed that our score data followed a multivariate
Gaussian distribution.
We used the expectation-maximization (EM) algo-

rithm to estimate the model parameters, and then used
the Viterbi algorithm to infer the maximum likely state
configuration [38]. One technical problem is that the
EM algorithm can only achieve local optimization, and
the results are dependent on the initial condition. One
possible approach to overcome this problem is to repeat
the procedure many times, each with a randomly
selected initial guess. However, we found that it is more
efficient to choose a particular initial guess based on the
clustering results; that is, using the cluster means and
variances as initial guesses for the model parameters
associated with the hidden states. To test whether our
clustering method-based prior led to the optimal model

(in addition to being more efficient), we compared its
resulting log-likelihood to that of 100 models where we
randomly selected our prior parameters from the semi-
conjugate hierarchical model:

  

  
ks ks k k

ks k

N s

Inv

| ~ ( , )

~ ( ),

2 2

2 2

 

−

where μks is the prior mean for modification k (k = 1,
2, ..., 5) and state s (s = 1, 2, 3), sks

2 is the initial var-
iance for modification k and state s, θk is the sample
mean for modification k, s2k is the sample variance for
modification k, and νk is the degrees of freedom for
modification k such that E(sks

2)=(νk-2)
-1 = s2k. We

found that using the results from k-means clustering

Figure 6 Heatmaps of known gene clusters. The 35 gene region on Ch6 from Npy to 2410066E13Rik (49,772,728 to 54,650,400) as depictured
as a heatmap of histone modification and gene expression for (a) the ES cell line and (c) ES and NP cell lines. The 250 gene region on Ch7
from Art2a to Insc (108,701,290-121,993,728) as depictured as a heatmap of histone modification and gene expression for (b) the ES cell line and
(d) ES and NP cell lines. For all figures on the left (a and c), cluster state assignment is given in the first and second tracks and HMM state
assignments are in the third and fourth tracks (red for active state, blue for non-active state, yellow for null state). For figures on the right (b and
d), NP HMM state assignment is given in the first and second tracks and ES HMM state assignments are in the third and fourth tracks. Whether
(black) or not (white) a gene is a respective gene cluster in shown in the bottom track in all figures.
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to pick our prior results in a much higher final log-
likelihood than this hierarchal prior (Additional file 13:
Figure S7).
We also used the Viterbi algorithm, an approximation

of the Forward-Backward algorithm, to assign a state to
each gene. To determine the accuracy of the Viterbi
method, we compared its corresponding hidden maxi-
mum likelihood estimate (MLE) state assignment to that
obtained by the forward-backward algorithm, which
assigns states based on posterior probabilities, also
known as a maximum a posteriori (MAP) estimate.
These two algorithms were compared on the 615 gene
chromosome 19 and produced similar hidden states.
The Viterbi algorithm was used to assign gene state as
it is more computationally efficient.
The number of hidden states was equal to the optimal

number of clusters from our gap statistic results. For
the mouse data considered in this paper, our mouse
data, the optimal number was K = 3, where K is the
number of clusters. However, the gap statistic for K = 2
was similar, so we compared both setups in our analysis.

Significance of detected domains
To determine statistical significance of a domain, we
first calculated a likelihood ratio test statistic for each
domain j (j = 1,2, ..., n):




i

L

L

P H

P H M M
( ) ln

sup ( | )

sup ( | )
ln

( | )

( | )
X

x

x

x

x
j

j

j

j
= − = −

= −

2 20 0Θ

Θ

22 0 0 0ln
( | ) ( | )... ( | )

( | ) ( | ).

P H P H P H

P H M M P H M M

x x x

x x
i i 1 nj

i i 1

∗ ∗
∗

+

+ ... ( | )
,

∗ P H M Mx nj

where xi is the observed m-dimensional vector of his-
tone modifications for gene i (i = 1, 2, nj), nj is the num-
ber of genes in domain j, Xi | H0 ~N(μ0, Σ0) and Xi |
HMM ~N(μs, Σs). Note that μ0 and Σ0 are the m-dimen-
sional mean vector and diagonal variance matrix of the
entire dataset whereas μs and Σs are their individual
state-based counterparts. To calculate lj(X) for each
domain, the μs and Σs of the corresponding maximum
likelihood estimate state was used. Based on likelihood
theory, lj(X) ~ c2 df where the degrees of freedom (df) is
the difference in parameters between models. Thus, df =
2*S*m-2*m, where S is the number of states in the model.
To correct for multiple hypothesis testing, the significant
domains were selected such that the FDR = 0.01.

Numerical simulations
We simulated histone modification data corresponding to
prescribed domain configurations and assessed the accu-
racy of our model. We assumed that the histone modifica-
tion data for each gene was normally distributed with the
mean and variances estimated from the real data (Tables 3

Figure 7 DAVID analysis of genes within each ES significant domain. Genes in each state are described by the top three significant DAVID
clusters. Red corresponds to genes in the active state, blue for those in the non-active state and yellow for null state.
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&4). To further explore the model robustness against data
noise, we also repeated the above simulations with var-
iances equal to twice the observed variances. We applied
our HMM inference procedure to the simulated data. The
accuracy of our model was quantified as the percentage of
correctly assigned states.

Gene Ontology analysis
To test for functional coherence, we examined the
accordance of GO memberships within a domain via a
new statistic for each significant domain. For domain j,
we calculated the level of GO accordance, Yj, with Fleiss’
Kappa [27], which is a generalization of the standard
kappa for more than two raters (or in our case, ontolo-
gies). We then calculated the average accordance for
these domains, and compared it to a distribution made
under the null hypothesis (i.e., the hypothesis that
domains are independent of GO memberships).
For the null distribution, we took into account the fact

that neighboring genes often share GO annotations. To
this end, we selected 1000*n random sections of the
genome (of corresponding equal length in terms of
number of genes to our significant domains), calculated
their Yj’s and averaged them to get a null distribution
for our average accordance. The p-values were evaluated
as the proportion of permuted means that are larger
than the observed mean accordance. Thus the minimum
possible p-value was 0.001.

Gene expression data analysis
To account for variability in gene activity, expression
data in the ES cell line was normalized across data from
23 cell lines [10,25] to get a Z-statistic for each gene.
We then calculated the within-domain variance for each
significant domain and compared the average of these
values to that of a random permutation.
To determine the significance of our within domain

variance, we randomly selected 1000*n sections of the
genome (each with an equal number of genes as its cor-
responding significant domains) and calculated the aver-
age within domain variances.

Epigenetic domains in NP cells
The histone modification data in NP cells were obtained
from a published dataset [10,25]. The ChIP-seq data in
NP cells were normalized against those in ES cells by a
negative-binomial regression as recommended [39]. We
assumed that the model parameters in the NP cells are
identical to those in the ES cells, and inferred the hid-
den states in NP cells by using the Viterbi algorithm
again. We determined domain changes by comparing
the results in NP and ES cells. A domain is called chan-
ged if at least one gene changed state between the two
cell lines.

Additional material

Additional file 1: Figure S1: Histogram plots of each of our five
modifications and their corresponding Poisson (red) and Gaussian (blue)
approximation distributions.

Additional file 2: Figure S2: Posterior distributions and Viterbi path for
the 615 genes on Ch19. Posterior probabilities for each of the three
epigenetic-states are shown in the top three plots. The black horizontal
line corresponds to 0.5 probability. The bottom plot is the state
assignment for each gene, determined by the Viterbi path. Genes
colored blue were assigned state 1 (non-active) by the Viterbi algorithm,
yellow were assigned state 2 (null), and red were assigned state 3
(active).

Additional file 3: Table S1: Significant domains for the two-state HMM.

Additional file 4: Table S2: Significant domains for the three-state
HMM.

Additional file 5: Table S3: Genes in significant non-active domains for
the three-state HMM.

Additional file 6: Table S4: Genes in significant null domains for the
three-state HMM.

Additional file 7: Table S5: Genes in significant active domains for the
three-state HMM.

Additional file 8: Figure S3: Simulation results for the (a) two- and (b)
three-state HMMs. The two-state HMM captures the truth 98% of the
time, while the three-state HMM captures it 99% of the time. The top
two tracks are a simulated H3K4me3 and H3k27me3 count, respectively.
The third track is the true state (based on a random permutation), and
the fourth track is the states as predicted by our model.

Additional file 9: Figure S4: Simulation results for the (a) two- and (b)
three-state HMMs where the simulated modification counts are based on
high variance models. The two-state HMM captures the truth 97% of the
time, while the three-state HMM captures it 99% of the time. The top
two tracks are a simulated H3K4me3 and H3k27me3 count, respectively.
The third track is the true state (based on a random permutation), and
the fourth track is the states as predicted by our model.

Additional file 10: Table S6: Corresponding NP domains for the
significant ES domains fit by the three-state HMM.

Additional file 11: Figure S5: Heatmaps for the NP cell line. (a) The 35
gene region on Ch6 from Npy to 2410066E13Rik (49,772,728 to
54,650,400) as depictured as a heatmap of histone modification and
gene expression. (b) The 250 gene region on Ch7 from Art2a to Insc
(108,701,290-121,993,728) as depictured as a heatmap of histone
modification and gene expression. NP HMM state assignments are in the
first and second tracks (red for active state, blue for low state, yellow for
null state). Whether (black) or not (white) a gene is a respective gene
cluster in shown in the bottom track in all figures.

Additional file 12: Figure S6: DAVID cluster analysis of genes within
each ES significant domain in the NP cell line. Genes in each type of
change are described by the top three significant DAVID clusters. Red
corresponds to genes in the active state, blue for those in the non-active
state and yellow for null state, in the NP cell line.

Additional file 13: Figure S7: Log likelihood results for the 100
randomly chosen priors (black) versus a prior based on K-means
clustering (red).
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Ch: Chromosome; ES: embryonic stem; GO: Gene ontology; HMM: hidden
Markov model; MAP: maximum a posteriori; MLE: maximum likelihood
estimate; NP: neural progenitor; OR: olfactory receptor
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